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TECHNICAL STABILITY OF NONLINEAR STATES

OF AN ELASTIC VEHICLE IN VERTICAL FLIGHT

UDC 517.946:531.36K. S. Matviichuk

Sufficient conditions of technical stability of nonlinear dynamic states of extended elastic flying sys-
tems in controlled longitudinal vertical flight are obtained. In these flying systems, the effect of
variation of their cross-sectional area, transverse strains, and oscillations is taken into account. The
formulated criteria of technical stability depend on the basic parameters of the process controlled,
namely, on the increment of the transverse load due to the curvature of the axis of the system and
aerodynamic forces during vertical flight.

Introduction. This work deals with technical stability [1–8] of nonlinear dynamic states of extended elastic
rocket-type flying systems moving in the vertical plane. These systems are shaped as thin extended bodies with a
variable cross section where high transverse strains and oscillations appear during the flight. With increasing size,
such dynamic bodies become less rigid, and the influence of elastic and other oscillations on flight and flight control
becomes significant. Interaction of strain, angular motion of the body of the system, external aerodynamic forces,
and internal hydrodynamic disturbances caused by the oscillating liquid in the tanks of the system can lead to
undesirable effects, such as self-induced oscillations, loss of stability, etc. As a result, the flying system may fail to
fly along a given trajectory. Flight control serves to reduce deviations from given angular and other motions of the
flying vehicle. Flight control can stabilize or, vice versa, if an improper control action is chosen, shake the liquid
in the tanks and increase elastic oscillations. Sufficient conditions of technical stability of a given dynamic system
within finite and infinite time intervals are obtained for a proposed flight-control mode. The method of comparison
based on optimization of distributed processes is used in combination with the Lyapunov direct method. The study
performed is based on the results of [9–18].

Formulation of a Controlled Boundary-Value Problem of the System. Let the flying system be an
extended elastic body, for instance, a thin body of revolution or a body of revolution with low-aspect-ratio wings
and finning, which moves in the vertical plane [9–11]. Flight conditions require small deviations of the longitudinal
axis of the system from a given motion. Each point of the longitudinal axis of the flying vehicle should move along a
certain trajectory. During the flight, however, there are always deviations from a given motion. Appropriate flight
control should ensure a small deviation of the trajectory from a given one, for example, a straight line, and the
greatest possible flight accuracy. The flight velocity is assumed to be constant. Oscillations of the axis of the flying
system as a variable-section beam under the action of elastic forces, weight, and aerodynamic forces are described
by the following equations [7, 9–11, 14–16]:

∂ϕ1

∂t
= ϕ2,

∂ϕ2

∂t
= L(ϕ) +

α

m
u, t ∈ T1, x ∈ D. (1)

Here

L(ϕ) = − 1
m

∂2

∂x2

(
EI

∂2ϕ1

∂x2

)
− a1

m
ϕ2 −

b1
m

∂ϕ1

∂x
− 1
m
Q̄,

x = x̃/l, ϕ1 = ϕ̃/l, ϕ2 = (1/
√
gl)(∂ϕ̃/∂τ), t =

√
g/l τ , EI = ẼĨ/(Gl2), a1 = ãl

√
gl/G, b1 = b̃l/G, m = m̃gl/G,

0 < µ 6 µ0 < 1, T1 = [t0, Nµ−1], D ≡ (0, 1), t0 = const > 0, N = const > 0, T1 ⊂ I1 ≡ [t0,+∞), u = u(x, t) is
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flight control, α = α(x) is a given function that takes into account the point of application of the governing forces,
for example, if the flight control is applied at the sector [a, 1] of the axis only, then we assume that α(x) ≡ 0 for
x ∈ [0, a) and α(x) = 1 for x ∈ [a, 1]), G is the weight, l is the length of the flying body, x̃ is the coordinate of the
current cross section, ϕ̃ = ϕ̃(x̃, τ) is the deviation of the axis from the equilibrium state, ϕ1 is the dimensionless
deviation of the axis, ẼĨ is the flexural rigidity, m̃ is the mass per unit length, ã and b̃ are the coefficients of
aerodynamic forces, g is the acceleration of gravity, Q̄ is the increment of the transverse load due to the curvature
of the longitudinal axis of the system, τ is the time, and t is the dimensionless time. In the case of horizontal flight,
we have Q̄ ≡ 0 [9, 10, 14]. Note, the change in transverse forces due to the force of gravity at small deviations from
the equilibrium state is a quantity of the second order of smallness [14]. If the flight is close to vertical, the moment
of the force of gravity is [11, 14]

Mg =

x̃∫
0

m̃g[ϕ̃(x̃, τ)− ϕ̃(ξ, τ)] dξ.

Therefore, for a distributed load, we find

Q0 =
∂2Mg

∂x̃2
=

∂

∂x̃

(
q0
∂ϕ̃

∂x̃

)
, q0 = q0(x̃) =

x̃∫
0

gm̃(ξ) dξ.

In dimensionless variables, for vertical flight, we obtain [13]

Q̄ =
m

m̃g
Q0 =

∂

∂x

(
q
∂ϕ1

∂x

)
, q =

q0

G
=

x∫
0

mdx. (2)

The coefficients a1 and b1 are found by solving aerodynamics equations [12]. In a flight with a supersonic
velocity, the law of planar cross sections is valid [7, 15], and the aerodynamic forces are more readily found [12, 13].
The flow pressure in a transverse flow past thin bodies is determined by the local angle of attack

α̃ =
1
v∞

∂ϕ̃

∂τ
+
∂ϕ̃

∂x̃
,

where v∞ is the free-stream velocity.
Let c = c(x̃) be the span of the thin wing in a cross section with the coordinate x̃. The normal component

of the aerodynamic force in this cross section has the form

n(x̃, t) = −2

c(x̃)/2∫
−c(x̃)/2

(p− p∞) dx =
2χp∞v∞c(x̃)

a∞
α̃,

where χ = cp/cV (cp and cV are the heat capacities at constant pressure p and volume V , respectively) and p∞ and
a∞ are the free-stream pressure and velocity of sound. Then, the coefficients ã and b̃ become [9–11]

ã = 2χp∞c(x̃)/a∞, b̃ = 2χp∞v∞c(x̃)/a∞.

For wings of rectangular planform, ã and b̃ are constant. The normal component of aerodynamic forces in the flow
past extended bodies of revolution is [9–14, 16]

n(x̃, t) = ρ∞v
2
∞R

dR

dx̃
α̃,

where R = R(x̃) is the radius of the body of revolution and ρ∞ is the free-stream density. In this case, we have

ã = ρ∞v∞R
dR

dx̃
, b̃ = ρ∞v

2
∞R

dR

dx̃
.

For R = R0

√
x̃, the coefficients ã and b̃ are independent of x̃.

In what follows, we consider the case where Q̄ is determined by Eq. (2), i.e., the flight is close to vertical.
We introduce boundary conditions for the function ϕ1 = ϕ1(x, t). The moment and concentrated force are absent
at the leading edge of the body (x = 0):(∂2ϕ1

∂x2

)
x=0

=
[ ∂
∂x

(
EI

∂2ϕ1

∂x2

)]
x=0

= 0. (3)
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The moment is absent near the trailing edge (x = 1):(∂2ϕ1

∂x2

)
x=1

= 0. (4)

The motion of the flying system can be controlled, in addition to the control u, by the control force uS applied at
the point x = 1, i.e., [ ∂

∂x

(
EI

∂2ϕ1

∂x2

)]
x=1

= uS . (5)

Let the initial conditions of a prescribed process be defined:

ϕ1(x, t)|t=t0 = ω0(x), ϕ2(x, t)|t=t0 = v0(x), t0 ∈ T1, x ∈ D,
(6)

ϕ0(x) ≡ (ω0(x), v0(x))t.

We study the boundary-value problem of control (1)–(6) under the assumption that this system has a unique
solution in the class of functions continuous in terms of t andx and possessing continuous derivatives with respect to
t and x of necessary orders in the case of prescribed functions ω0(x) and v0(x) that satisfy the necessary conditions
of matching at the system boundary [3–7, 15]. The measure ρ = ρ(ϕ) that characterizes the deviation of the
functions ϕ = (ϕ1(x, t), ϕ2(x, t)) [ϕ2(x, t) = ∂ϕ1(x, t)/∂t] from the value ϕ = 0 of the undisturbed process is chosen
to be [2–8]

ρ[ϕ] =

1∫
0

[(∂2ϕ1

∂x2

)2

+
(∂ϕ1

∂x

)2

+ ϕ2
1 + ϕ2

2

]
dx. (7)

Let the domain of possible initial states Ω0 of system (1)–(6) be defined in the form

Ω0 = {ϕ: ρ 6 ã1, ã1 > 0}

and the domain of admissible current states Ω(t) of system (1)–(6) be defined in the form

Ω(t) = {ϕ: ρ 6 η(t), 0 < η(t) 6 η̃, η̃ = const > 0},

where ã1 is a given number and η(t) is a function bounded in the range T1 ⊂ I1. In this case, the conditions

ã1 6 η(t0), Ω0 ⊂ Ω(t0), t0 ∈ T1

are valid.
The optimal control minimizing the functional

J0 =

T∫
0

W dτ +W0 (T = Nµ−1),

where

W =

1∫
0

1∫
0

2∑
i=1

wii(x, ξ)ϕi(x, t)ϕi(ξ, t) dx dξ +

1∫
0

ω(x)u2 dx+ ωSu
2
S ,

W0 =

1∫
0

1∫
0

2∑
i=1

ωii(x, ξ)ϕi(x, T )ϕi(ξ, T ) dx dξ,

is determined by the method of dynamic programming [9–11]. Here w11 = w11(x, ξ), w22 = w22(x, ξ), ω = ω(x),
ω11 = ω11(x, ξ), and ω22 = ω22(x, ξ) are prescribed weight functions, and ω(1) = ωS .

To find the optimal functional V0 of the basic equation of dynamic programming

V0 =

1∫
0

1∫
0

2∑
i,j=1

vij(x, ξ, t)ϕi(x, t)ϕj(ξ, t) dx dξ

we have the following relation [11, 14]:
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K =
dV0

dt
+W =

1∫
0

1∫
0

{[∂v11

∂t
− ∂2

∂x2

(
EI

∂2(v21/m)
∂x2

)
− ∂

∂x

(
q
∂(v21/m)

∂x

)
+
∂(b1v21/m)

∂x

− ∂2

∂ξ2

(
EI

∂2(v12/m)
∂ξ2

)
− ∂

∂ξ

(
q
∂(v12/m)

∂ξ

)
+
∂(b1v12/m)

∂ξ
+ ω11

]
ϕ1(x, t)ϕ1(ξ, t)

+
[∂v12

∂t
+ v11(x, ξ, t)− ∂2

∂x2

(
EI

∂2(v22/m)
∂x2

)
− ∂

∂x

(
q
∂(v22/m)

∂x

)
+
∂(b1v22/m)

∂x
− a1(ξ)
m(ξ)

v12(x, ξ, t)
]
ϕ1(x, t)ϕ2(ξ, t)

+
[∂v21

∂t
+ v11(x, ξ, t)− ∂2

∂ξ2

(
EI

∂2(v22/m)
∂ξ2

)
− ∂

∂ξ

(
q
∂(v22/m)

∂ξ

)
+
∂(b1v22/m)

∂ξ
− a1(x)
m(x)

v21(x, ξ, t)
]
ϕ2(x, t)ϕ1(ξ, t)

+
[∂v22

∂t
+ v12(x, ξ, t) + v21(x, ξ, t)− v22(x, ξ, t)

(a1(x)
m(x)

+
a1(ξ)
m(ξ)

)
+ w22

]
ϕ2(x, t)ϕ2(ξ, t)

}
dx dξ

−
1∫

0

{[
EI(ξ)

∂2(v12/m)
∂ξ2

+
v12(x, ξ, t)q(ξ)

m(ξ)

]∂ϕ1

∂ξ

+
[
− ∂

∂ξ

(
EI

∂2(v12/m)
∂ξ2

)
+
b1(ξ)
m(ξ)

v12(x, ξ, t)− q(ξ) ∂(v12/m)
∂ξ

]
ϕ1(ξ, t)

}ξ=1

ξ=0
ϕ1(x, t) dx

−
1∫

0

{[
EI(ξ)

∂2(v22/m)
∂ξ2

+
v22(x, ξ, t)q(ξ)

m(ξ)

]∂ϕ1

∂ξ

+
[
− ∂

∂ξ

(
EI

∂2(v22/m)
∂ξ2

)
+
b1(ξ)
m(ξ)

v22(x, ξ, t)− q(ξ) ∂(v22/m)
∂ξ

]
ϕ1(ξ, t)

}ξ=1

ξ=0
ϕ2(x, t) dx

−
1∫

0

{[
EI(x)

∂2(v21/m)
∂x2

+
v21(x, ξ, t)q(x)

m(x)

]∂ϕ1

∂x

+
[
− ∂

∂x

(
EI

∂2(v21/m)
∂x2

)
+
b1(x)
m(x)

v21(x, ξ, t)− q(x)
∂(v12/m)

∂x

]
ϕ1(x, t)

}x=1

x=0
ϕ1(ξ, t) dξ

−
1∫

0

{[
EI(x)

∂2(v22/m)
∂x2

+
v22(x, ξ, t)q(x)

m(x)

]∂ϕ1

∂x

+
[
− ∂

∂x

(
EI

∂2(v22/m)
∂x2

)
+
b1(x)
m(x)

v22(x, ξ, t)− q(x)
∂(v22/m)

∂x

]
ϕ1(x, t)

}x=1

x=0
ϕ2(ξ, t) dξ

+

1∫
0

ω(x)u2(x, t) dx+

1∫
0

α(x)u(x, t)
m(x)

{ 1∫
0

[v12(ξ, x, t) + v21(x, ξ, t)]ϕ1(ξ, t) dξ

+

1∫
0

[v22(x, ξ, t) + v22(ξ, x, t)]ϕ2(ξ, t) dξ

}
dx.
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The functions vij = vij(x, ξ, t) should satisfy the final conditions

vij(x, ξ, T ) = 0, i 6= j, vii(x, ξ, T ) = ωii(x, ξ) (i = 1, 2) (8)

and the boundary conditions [
EI(ξ)

∂2(v12/m)
∂ξ2

+
q(ξ)v12(x, ξ, t)

m(ξ)

]
ξ=0, ξ=1

= 0,

[
− ∂

∂ξ

(
EI

∂2(v12/m)
∂ξ2

)
− q(ξ) ∂(v12/m)

∂ξ
+
b1(ξ)v12(x, ξ, t)

m(ξ)

]
ξ=0, ξ=1

= 0,

[
EI(x)

∂2(v21/m)
∂x2

+
q(x)v12(x, ξ, t)

m(x)

]
x=0, x=1

= 0,

[
− ∂

∂x

(
EI

∂2(v21/m)
∂x2

)
− q(x)

∂(v21/m)
∂x

+
b1(x)v21(x, ξ, t)

m(x)

]
x=0, x=1

= 0, (9)

[
EI(ξ)

∂2(v22/m)
∂ξ2

+
q(ξ)v22(x, ξ, t)

m(ξ)

]
ξ=0, ξ=1

= 0,

[
− ∂

∂ξ

(
EI

∂2(v22/m)
∂ξ2

)
− q(ξ) ∂(v22/m)

∂ξ
+
b1(ξ)v22(x, ξ, t)

m(ξ)

]
ξ=0, ξ=1

= 0,

[
EI(x)

∂2(v22/m)
∂x2

+
q(x)v22(x, ξ, t)

m(x)

]
x=0, x=1

= 0,

[
− ∂

∂x

(
EI

∂2(v22/m)
∂x2

)
− q(x)

∂(v22/m)
∂x

+
b1(x)v22(x, ξ, t)

m(x)

]
x=0, x=1

= 0.

The condition min
u

(K) yields the optimal control

u = − α(x)
2ω(x)m(x)

1∫
0

2∑
i=1

[vi2(ξ, x, t) + v2i(x, ξ, t)]ϕi(ξ, t) dξ; (10)

uS = − 1
2ωSm(1)

1∫
0

2∑
i=1

[vi2(ξ, 1, t) + v2i(1, ξ, t)]ϕi(ξ, t) dξ. (11)

Here the factors at the functions ϕ1(ξ, t) and ϕ2(ξ, t) are feedback amplification coefficients, which are functions
of coordinates of the points of the body axis. Displacements of different points make different contributions to the
magnitude of control, depending on the place where the point of the axis is located [11].

Expressions (10) and (11) are regulator equations closing system (1)–(6) and are a linear operator on the
set of shapes of axis deviations from the straight line and their velocities. To solve (10), (11), we have to measure
the values of ϕ1(ξ, t) and ϕ2(ξ, t) at each point of the axis at each time. For the measured values of ϕ1(ξ, t) and
ϕ2(ξ, t), we obtain from (10), (11) the following expressions at discrete points ξ0, ξ1, . . . , ξS , using the trapezium
rule [9–11]:

u = − α(x)
2ω(x)m(x)S

S∑
j=0

2∑
i=1

dj [vi2(ξj , x, t) + v2i(x, ξj , t)]ϕi(ξj , t),
(12)

uS = − 1
2ωSm(1)S

S∑
j=0

2∑
i=1

dj [vi2(ξj , 1, t) + v2i(1, ξj , t)]ϕi(ξj , t),

d0 = dS = 1/2, dj = 1, j 6= 0, S.

The control forces are proportional to the deviations ϕ1(ξj , t) and ϕ2(ξj , t) (j = 0, 1, 2, . . . , S).
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Regulator (10), (11) has a variable amplification coefficient in terms of the x axis and time. Equations (10)
and (11) are not only the optimal equations of the regulator but also determine the regulator structure. These
equations yield the law of formation of the control action based on the distributed values of deviations ϕ1(x, t) and
their velocities ϕ2(x, t) at a given time.

If the law of control distribution along the body axis is given and we have to determine the optimal depen-
dence on time, Eq. (10) should be replaced by an equation of the following form [9–11]:

u = − 1
2ω0

1∫
0

2∑
i=1

ϕi(ξ, t)

1∫
0

α(x)
m

[vi2(ξ, x, t) + v2i(x, ξ, t)] dx dξ, ω0 =

1∫
0

ω(x) dx > 0. (13)

According to (1), the law of axial distribution of the control forces has the form α(x)u(t)/m(x). If α = 0 for
x ∈ [0, a) and α/m = 1 for x ∈ [a, 1), then the control u(t) is uniformly distributed over the section x ∈ [a, 1] of the
axis of the flying vehicle. The control force is absent outside this sector of the axis.

The symmetric functions vij = vij(x, ξ, t) that enter control (10), (12), (13), as it follows from the condi-
tion K = 0, should satisfy the following system of nonlinear integrodifferential equations [9–11, 14] under the final
and boundary conditions (8), (9):

∂v11

∂t
− ∂2

∂x2

(
EI

∂2(v21/m)
∂x2

)
− ∂

∂x

(
q
∂(v21/m)

∂x

)
+
∂(b1v21/m)

∂x
− ∂2

∂ξ2

(
EI

∂2(v12/m)
∂ξ2

)
− ∂

∂ξ

(
q
∂(b1v12/m)

∂ξ

)
+
∂(b1v12/m)

∂ξ
+ w11 −R11 − R̄11 = 0,

∂v12

∂t
+ v11 −

a1(ξ)
m(ξ)

v12 −
∂2

∂x2

(
EI

∂2(v22/m)
∂x2

)
− ∂

∂x

(
q
∂(v22/m)

∂x

)
+
∂(b1v22/m)

∂x
−R12 − R̄12 = 0,

(14)
∂v21

∂t
+ v11 −

a1(x)
m(x)

v21 −
∂2

∂ξ2

(
EI

∂2(v22/m)
∂ξ2

)
− ∂

∂ξ

(
q
∂(v22/m)

∂ξ

)
+
∂(b1v22/m)

∂ξ
−R21 − R̄21 = 0,

∂v22

∂t
+ v12 + v21 −

[a1(x)
m(x)

+
a1(ξ)
m(ξ)

]
v22 + w22 −R22 − R̄22 = 0.

In the case of control (10), Rij has the form

Rij =
1
4

1∫
0

α2(η)rij(t, ξ, η, x, y)
ω(η)m2(η)

dη,

and in the case of control (13), it has the form

Rij =
1

4ω2
0

1∫
0

1∫
0

α(y)α(η)
m(y)m(η)

rij(t, ξ, η, x, y) dy dη, R̄ij = − 1
4ωSm2(1)

rij(t, ξ, 1, x, 1),

r11(t, ξ, η, x, y) = [v12(ξ, η, t) + v21(η, ξ, t)][v12(x, y, t) + v21(y, x, t)],

r21(t, ξ, η, x, y) = [v12(ξ, η, t) + v21(η, ξ, t)][v22(x, y, t) + v22(y, x, t)],

r12(t, ξ, η, x, y) = [v22(ξ, η, t) + v22(η, ξ, t)][v12(x, y, t) + v21(y, x, t)],

r22(t, ξ, η, x, y) = [v22(ξ, η, t) + v22(η, ξ, t)][v22(x, y, t) + v22(y, x, t)].

It is problematic to find the exact solution for system (14) because of its nonlinearity and variable coefficients.
Therefore, to solve the problem of technical stability of the initial process (1)–(6) with (10), (11), we apply the
method of comparison [1–8, 17, 18]. We assume that process (1)–(6), (10), (11) is put into correspondence to the
Lyapunov functional V [ϕ, t], which is discussed in more detail below.

We assume that the controlled process considered is technically stable in accordance with the following
definitions.
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Definition 1. The controlled dynamic process described by the boundary-value problem (1)–(6), (10),
(11) is called technically stable on a given limited time interval T1 ⊂ I1 in terms of a given measure ρ[ϕ] and
Lyapunov functional V [ϕ, t] if the following condition is satisfied for the functional V [ϕ, t] positively defined with
respect to the measure ρ[ϕ] in the case of admissible continuous control u of the form (10), (11) along the disturbed
solutions ϕ(x, t) of the boundary-value problem (1)–(6), (10), (11):

V [ϕ(x, t), t] 6 A(t) ∀ t ∈ T1, ∀ x ∈ D,

if, at the initial time t0, we have the inequality

V [ϕ0(x), t0] 6 b, t0 ∈ T1 ∀ x ∈ D, (15)

where the value of V [ϕ0(x), t0] is determined on the initial data (6), and the preliminarily chosen constant b > 0
and the limited function A(t) specified on the time interval T1 ⊂ I1 satisfy the conditions A(t) 6 η(t), A(t0) > b,
0 < A(t) 6 Ā, Ā = const > 0, 0 < η(t) 6 η̃, η̃ = const > 0, t0 ∈ T1, and t1 ∈ T1.

Definition 2. If the conditions of Definition 1 are satisfied at an arbitrary time interval T1 ⊆ I1, then the
controlled dynamic process (1)–(6), (10), (11) is called technically stable in terms of the specified measure ρ[ϕ] and
Lyapunov functional V [ϕ, t] on an infinite time interval I1.

Definition 3. If the condition

lim
t→+∞

V [ϕ(x, t), t] = 0

is valid along the solutions of the boundary-value problem (1)–(6), (10), (11) in addition to the satisfied conditions
of Definition 2, then, the initial controlled dynamic process (1)–(6), (10), (11) is called technical asymptotically
stable in terms of the specified measure ρ[ϕ] and Lyapunov functional V [ϕ, t].

Definition 4. A controlled dynamic process with a variable structure (1)–(6), (10), (11) is called technically
unstable in terms of the measure ρ[ϕ] and specified Lyapunov functional V [t, ϕ] in the region T1 or I1 for a given
constant b and functions A(t) and η(t), if under satisfied condition (15) determined on the initial data (6), for the
solutions ϕ(x, t) of the boundary-value problem (1)–(6), (10), (11) for admissible control u (10), (11), there is a
value t1 ∈ T1 or t1 ∈ I1 (t1 > t0) such that the following inequality is satisfied:

V [ϕ(x, t1), t1] > η̃ (η̃ = const > 0).

It follows from definitions 1–4 that the conditions of technical stability are characterized not only by the fact
that a specified control process with distributed parameters is considered on a prior defined limited time interval,
but also by the fact that the restrictions on the initial states of the initial process are independent of the conditions of
majorization of the subsequent states of the controlled process on a given time interval. The unnecessary condition
of negative determinacy or nonpositiveness of the total derivative of the Lyapunov functional on the states of the
initial process, in contrast to stability according to Lyapunov, extends the range of the parameters of the initial
process [1, 3–8].

Conditions of Technical Stability of Dynamic States of an Elastic Flying Vehicle on a Given
Time Interval. To study the properties of technical stability of the process considered, we set the functional [7]

V [ϕ, t] =

1∫
0

[(∂2ϕ1

∂x2

)2

− P
(∂ϕ1

∂x

)2

+
(∂ϕ1

∂t

)2]
dx,

(16)

P = Q̄1 + a0
1 + b01, Q̄1 = sup

x
(Q̄), a0

1 = sup
x

(a1), b01 = sup
x

(b1).

The following problem is posed: for given optimal control u (10), uS (11) that satisfies relations (8), (9) and
Eqs. (14), we have to determine conditions that ensure the fulfillment of the property

ϕ(x, t) ∈ Ω(t), t ∈ T1, x ∈ D

with respect to the measure ρ = ρ[ϕ] (7) for the solutions ϕ(x, t) of problem (1)–(6), (10), (11) for given initial
values

ϕ0(x) ∈ Ω0, t0 ∈ T1 ∀ x ∈ D.

For the functional V (16), we obtain the following estimate from below:
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3V [ϕ, t] > π2

1∫
0

dx
(∂ϕ1

∂x

)2

− P
1∫

0

dx
(∂ϕ1

∂x

)2

+ 2

1∫
0

dx
(∂2ϕ1

∂x2

)2

− 2
π2

P

1∫
0

dx
(∂2ϕ1

∂x2

)2

+ (1− P )

1∫
0

dx
(∂ϕ1

∂t

)2

> (1− P )
[

sup
x

(ϕ1)2 + sup
(∂ϕ1

∂x

)]
+

1∫
0

dx
(∂2ϕ1

∂x2

)2

− 1
π2

P

1∫
0

dx
(∂2ϕ1

∂x2

)2

+ (1− P )

1∫
0

dx
(∂ϕ1

∂t

)2

6 (1− P )

[
sup(ϕ1)2 + sup

x

(∂ϕ1

∂x

)2

+

1∫
0

dx
(∂2ϕ1

∂x2

)2

+

1∫
0

dx
(∂ϕ1

∂t

)2
]
> (1− P )ρ(ϕ).

Hence, we obtain

V [ϕ, t] > (1/3)(1− P )ρ(ϕ). (17)

According to (17), the functional V [ϕ, t] (16) is positively determined under the condition 0 < 1− P 6 1.
For the dynamic processes considered, it makes sense to consider the case

0 < 1− P < 1. (18)

The quantity µ = 1− P is a small positive parameter: µ ∈ (0, 1). Condition (18) is valid if the following inequality
is satisfied [9–11]:

l(Q̃+ ã
√
gl + b̃) < G ∀ x ∈ D. (19)

Using the parameter µ determined in accordance with (17)–(19), we set a finite time interval T1, where, in accordance
with (1), we consider the dynamic behavior of the system: T1 = [t0, Nµ−1], where t0 > 0 and N = const > 0 is a
quantity that characterizes the reliability of the system.

Let functions A(t) and η(t) of the form

A(t) =
M

2
exp

(
− 1
µ+ t

)[
exp

( 2
µ+ t0

)
− exp

( 2
µ+ t

)]
+ y0 exp

(
− 1
µ+ t

)
exp

( 1
µ+ t0

)
,

η(t) = exp
(
− 1
µ+ t

){M̃
2

[
exp

( 2
µ+ t0

)
− exp

( 2
µ+ t

)]
+ b exp

( 1
µ+ t0

)}
6 η̃, (20)

M,M̃, η̃ = const > 0, M 6 M̃

be specified under the conditions

0 < y0 6 b, b = const > 0, y0 = const > 0. (21)

Using the functional V (16), we determine the set [1, 2, 8]

Cy0 = {ϕ: V [ϕ, t] 6 y0 ∀ t ∈ T1, ∀ x ∈ D},

which is assumed to satisfy the condition

Ω0 ⊂ Cy0 for t = t0. (22)

We calculate the total derivative of the functional V (16) with respect to t along the solutions of the boundary-value
problem (1)–(6) with control (10), (11):

dV [ϕ(x, t), t]
dt

=
m(1) + EI(1)
EI(1)m2(1)

ϕ2(t, 1)
1
ωS

1∫
0

2∑
i=1

[vi2(ξ, 1, t)+v2i(ξ, 1, t)]ϕi(ξ, t) dξ

+ 2

1∫
0

dx

[( 1
m

∂

∂x

(
EI(x)

∂2ϕ1(x, t)
∂x2

)
− P ∂ϕ1(x, t)

∂x

)∂ϕ2(x, t)
∂x
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+
(∂4ϕ1(x, t)

∂x4
− a1(x)
m(x)

ϕ2(x, t)− b1(x)
m(x)

∂ϕ1(x, t)
∂x

− 1
m(x)

Q̄(x)
)
ϕ2(x, t)

− α2(x)
2ω(x)m2(x)

ϕ2(x, t)

1∫
0

2∑
i=1

[vi2(ξ, x, t)+v2i(x, ξ, t)]ϕi(ξ, t) dξ

]
. (23)

We consider system (1)–(6), (10), (11) in the given domain

Ω̄ =

{
t, x, ϕi,

∂ϕi
∂t

,
∂kϕ1

∂xk
,
∂iϕ2

∂xi
,m(x), Q̄(x), P, a1, b1, ω, vij , EI(x),

∂(EI)
∂x

:

t ∈ T1, x ∈ D, |ϕi| 6 ni,
∣∣∣∂ϕi
∂t

∣∣∣ 6 li, ∣∣∣∂kϕ1

∂xk

∣∣∣ 6 ck, ∣∣∣∂iϕ2

∂xi

∣∣∣ 6 γi, mmin 6 m(x) 6 mmax,

0 6 Q̄(x) 6 Q̄max, 0 6 P < 1, a1 min 6 a1 6 a1 max, b1 min 6 b1 6 b1 max,

0 < ωmin 6 ω 6 ωmax, |vij | 6 θij , 0 < EI 6 K1 ≡ max
x

(EI),
∣∣∣∂(EI)
∂x

∣∣∣ 6 K2;

ck, γi, mmin, mmax, b1 min, b1 max, Q̄max, ωmin, ωmax, K1, K2 = const > 0, i = 1, 2, j = 1, 2, k = 1, . . . , 4

}
.

We denote the expression in the right side of equality (23) as M(t). We consider the function

Φ̄(t) = M(t)− (µ/(3(µ+ t)2))ρ(ϕ(x, t)). (24)

Let the function Φ̄(t) (24) satisfy the condition

|Φ̄(t)| 6 Φ(t) ≡M exp(1/(µ+ t))/(µ+ t)2, (25)

where M = const > 0 is a prescribed quantity. In particular, |M(t)| 6M ,

M ≡ m(1) + EI(1)
EI(1)m2(1)

n2
1
ωS

2∑
i=1

[θi2+θ2i]ni + 2
[( 1
mmin

K2c2 +
1

mmin
K1c3 + c1

)
γ1

+
(
c4 +

a1 max

mmin
n2 +

b1 max

mmin
c1 +

Q̄max

mmin

)
n2 +

1
2ωminm2

min

c2

2∑
i=1

[θi2 + θ2i]ni
]
6 M̃.

In the region T1, there is an integral σ(t) =

t∫
t0

Φ(τ) dτ . We consider the function z(t) = V [ϕ(x, t), t]− σ(t)

along the solutions of problem (1)–(6), (10), (11). Under the above conditions, the estimates for dV /dt along the
solutions of this problem yield the following inequality [7, 15, 17, 18]:

dz(t)
dt
6

µ

(µ+ t)2
[z(t) + σ(t)]. (26)

Equation (26) leads to the Cauchy problem of comparison of the form [2–8, 17]

dy

dt
=

1
(µ+ t)2

[y + σ(t)], t ∈ T1; (27)

y(t0) = y0 > V0 ≡ V [ϕ0(x), t0], t0 ∈ T1 ∀ x ∈ D. (28)

Under the above conditions, problem (27), (28) in the region T1 has a continuous solution

y(t) =
M

2
exp

(
− 1
µ+ t

)[
exp

( 2
µ+ t0

)
− exp

( 2
µ+ t

)]
+ y0 exp

( 1
µ+ t0

)
exp

(
− 1
µ+ t

)
− σ(t). (29)

Using (29) and the corresponding theorem of differential inequalities [17, 18], we find

z(t) < y(t), t ∈ T1. (30)
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From (30), along the solution of problem (1)–(6), (10), (11) under conditions (18), (19), we obtain

V (t) 6 y(t) + σ(t), t ∈ T1. (31)

From (29) and (31), we obtain the inequalities

V (t) 6 A(t) 6 η(t), A(t) ≡ ȳ(t) + σ(t). (32)

For t ∈ T1, we have

A(t) 6
M

2
exp

(
− 1
µ+Nµ−1

)[
exp

( 2
µ+ t0

)
− exp

( 2
µ+Nµ−1

)]
+ y0 exp

(
− 1
µ+Nµ−1

)
exp

( 1
µ+ t0

)
,

η(t) 6 exp
(
− 1
µ+Nµ−1

){M
2

[
exp

( 2
µ+ t0

)
− exp

( 2
µ+Nµ−1

)]
+ b exp

( 1
µ+ t0

)}
6 η̃, (33)

A(t0) ≡ b, V0 6 b

along the solution of problem (1)–(6), (10), (11) under conditions (18) and (19).
From inequalities (32) and (33), we obtain [2, 18]

CA(t) ⊂ Ω(t), CA(t) = {ϕ: V [ϕ, t] 6 A(t) ∀ t ∈ T1, ∀ x ∈ D}. (34)

It follows from relation (34) and condition (22) with allowance for (18), (19), (21), and (28) that the initial process
(1)–(6) for ϕ0 ∈ Ω0, control (10), (11), and conditions (8), (9), and (14) is technically stable in terms of the specified
measure ρ (7) and Lyapunov functional V (16) on the limited time interval T1 [1–8].

For t→ +∞ and condition (20), the estimate A(t) 6 η(t) is valid. The estimate

A(t) 6 A, A ≡ (M/2)[exp(2/(µ+ t0))− 1] + y0 exp(1/(µ+ t0))

is valid for all T1 ⊆ I1, which follows from (32) for t → +∞. Thus, process (1)–(6), (10), (11) for ϕ0 ∈ Ω0 is
technically stable on an infinite time interval I1 in terms of the specified measure ρ and Lyapunov functional V .
For a given function Φ(t) of the form (25), the condition of asymptotic technical stability of the initial process is
not satisfied [1, 3–8, 18].

These conditions of technical stability of the initial controlled process (1)–(6), (10), (11) are violated if the
parameters Q0, ã, and b̃ satisfy the inequality P > 1, which, in accordance with (16), (18), (19), is identical to the
inequality [1, 3–8]

(l/G)(Q0 + ã
√
gl + b̃) > 1 ∀ x ∈ D, (35)

since the condition of positive determinacy (17) for functional (16) is not satisfied in this case. The initial system
(1)–(6) for ϕ0 ∈ Ω0, control (10), (11), and conditions (8), (9), and (14) is technically unstable in T1 or I1 in terms
of the measure ρ and Lyapunov functional V , if the function A(t) in these regions satisfy the condition

A(t)→ +∞ for t ∈ T1 or t ∈ I1. (36)

In particular, condition (36) is satisfied for t0 = 0 and arbitrary values of t > 0, as µ → 0, which, as follows from
conditions (18) and (19), corresponds to a drastic increase in parameters that characterize the initial controlled
process (1)–(6), (10), (11), for instance, a drastic increase in the increment of the transverse load Q0 due to the
curvature of the longitudinal axis of the system in vertical flight. In the latter case, the critical increment Qcr

0 of
the transverse load due to the curvature of the longitudinal axis of the system is determined using inequality (35):

Qcr0 = G/l − ã
√
gl − b̃. (37)

Equation (37) indicates an explicit dependence of the increment of the transverse load on a vertically moving system
on the other governing parameters.

Let the following condition be valid under the above properties (16)–(29):

θ−1A(t) 6 η(t), θ = (1− P )/3. (38)

In particular, property (38) is valid under the assumption that the following inequalities are satisfied:

θ−1z0 6 b, θ−1M 6 M̃. (39)
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Then along the solution of problem (1)–(6), (10), (11) with respect to the measure ρ (7), we obtain the estimate

ρ[ϕ(x, t)] 6 η(t), t ∈ T1 ⊆ I1. (40)

Hence, under the above assumptions (7), (15)–(34) and additional conditions (38), (39), the initial process (1)–(6),
(10), (11) for ∀ t ∈ T1 ⊆ I1 and property (40) being satisfied is technically stable in terms of the given measure ρ (7)
on finite or infinite time intervals [1, 3–8, 17].

Conditions of Asymptotic Technical Stability of an Elastic Flying System. For control u (10),
uS (11) and conditions (8), (9), and (14), we consider the functions

Φ1(t, ϕ(x, t), uS) =
m(1) + EI(1)
EI(1)m2(1)

ϕ2(1, t)
1
ωS

1∫
0

2∑
i=1

[vi2(ξ, 1, t) + v2i(1, ξ, t)]ϕi(ξ, t) dξ

+ 2

1∫
0

dx
[( 1
m

∂

∂x

(
EI(x)

∂2ϕ1(x, t)
∂x2

))∂ϕ2(x, t)
∂x

+
∂4ϕ1(x, t)

∂x4
ϕ2(x, t)

]
; (41)

Φ2(t, ϕ(x, t), u) = −2

1∫
0

dx

[
P
∂ϕ1(t, x)

∂x

∂ϕ2(t, x)
∂x

+
a1(x)
m(x)

ϕ2
2(t, x)

+
b1(x)
m(x)

∂ϕ1(t, x)
∂x

ϕ2(t, x) +
1

m(x)
Q̄(x)ϕ2(x, t) +

α2(x)
2ω(x)m2(x)

ϕ2(x, t)

1∫
0

2∑
i=1

[vi2(ξ, x, t) + v2i(x, ξ, t)]ϕi(ξ, t) dξ

]
,

assuming that they exist in the region I1. Let the following conditions be satisfied for the functions Φ1(t, ϕ(x, t), uS)
and Φ2(t, ϕ(x, t), u) if the properties (8), (9), and (14) are valid on the solution of the initial problem (1)–(6),
(10), (11):

Φ2(t, ϕ(x, t), u) 6 −V [ϕ(x, t), t], t ∈ T1 ⊆ I1; (42)

|Φ1(t, ϕ(x, t), uS)| 6Mm1(t), t ∈ T1 ⊆ I1. (43)

Here m1(t) is a limited function for which the following integrals exist:

σ(t) = M

t∫
t0

m1(τ) dτ, t ∈ T1 ⊆ I1, σ1(t) =

t∫
t0

eτm1(τ) dτ, t ∈ T1 ⊆ I1. (44)

Under conditions (44), we use the following functions A(t) and η(t):

A(t) = e−(t−t0)
[
y0 +Me−t0

t∫
t0

eτm1(τ) dτ
]
,

(45)

η(t) = e−(t−t0)
[
M̃e−t0

t∫
t0

eτm1(τ) dτ + b
]
, M 6 M̃.

Using the inequality of the form

dV (t)
dt

6 −V (t) +Mm1(t) (t ∈ T1 ⊆ I1),

along the solutions of problem (1)–(6), (10), (11), we consider the system of comparison

dy

dt
= −[y + σ(t)], t ∈ T1 ⊆ I1; (46)

y(t0) = y0 > V0 ≡ V [ϕ0(x), t0], 0 < y0 6 b, t ∈ T1 ⊆ I1 ∀ x ∈ D. (47)

The solution for (46) and (47) has the form

ȳ(t) = e−(t−t0)
[
y0 +Me−t0

t∫
t0

eτm1(τ) dτ
]
− σ(t).

485



If Eqs. (44) and (45) are valid along the solutions of system (1)–(6), (10), (11), we obtain

V (t) 6 A(t) 6 η(t), A(t) ≡ ȳ(t) + σ(t). (48)

If the function A(t) (45) is limited as t→ +∞, then process (1)–(6), (10), (11) is technically stable on the unlimited
time interval I1 in terms of the measure ρ and Lyapunov functional V . If we have lim

t→+∞
A(t) = 0 for the functions

σ(t) and σ1(t) (44), then process (1)–(6), (10), (11) is asymptotically technically stable in terms of the given
measure ρ and Lyapunov functional V .

We consider various cases of the behavior of the function m1(t) as t→∞. Let in (42) and (43) we have

m1(t) = e−nt → 0 as t→ +∞, n > 2 (49)

(n is a natural number). Then, we use the functions A(t) and η(t) of the following form in Eq. (48) for problem
(1)–(6), (10), (11):

A(t) = e−(t−t0)
[
y0 +Me−t0

1
n− 1

(
e−(n−1)t0 − e−(n−1)t

)]
,

(50)

η(t) = e−(t−t0)
(
b+ M̃

1
n− 1

e−nt0
)
6 η̃, M 6 M̃.

If m1(t) = exp(1/(µ+ t)− t)/(µ+ t)2 → 0 as t→ +∞ and for µ ∈ (0, 1), then we use the following functions as A(t)
and η(t) in (48):

A(t) = e−(t−t0)
{
y0 +Me−t0

[
exp

( 1
µ+ t0

)
− exp

( 1
µ+ t

)]}
,

(51)

η(t) = e−(t−t0)
[
b+ M̃ exp

( 1
µ+ t0

− t0
)]
6 η̃, M 6 M̃.

According to Definition 3, relations (48)–(51) ensure asymptotic technical stability of the unsteady nonlinear elastic
controlled process (1)–(6), (10), (11) in terms of the given measure ρ and Lyapunov functional V . We can easily
see that, if relations (42)–(44) are satisfied, estimate (40) with respect to the measure ρ (7) is also valid under
conditions (38), (39) on the solution of the initial process.

If the functions Φ1(t, ϕ(x, t), uS) and Φ2(t, ϕ(x, t), u) satisfy the condition

Φ1(t, ϕ(x, t), uS) 6 −Φ2(t, ϕ(x, t), u) ∀ t ∈ I1, (52)

then according to (23), the controlled dynamic process (1)–(6), (10), (11) is stable according to Lyapunov. Hence,
the above-formulated sufficient conditions of technical stability of the initial controlled process (1)–(6), (10), (11) on
an infinite time interval include, in accordance with (41), (42), (52), conditions of stability of this process according
to Lyapunov with respect to the measure ρ (7).
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